Appendix of Chapter 4
Additional Material about the Separation of Variable

4-5. Separation of Variables. Steady From Arpuci " Conduction Heal Tmn;fer//
Two-Dlmensmnal Cartesian Geometry

“When the boundary cond1t1ons of a problem are in terms of spemﬁed T, 3T /on,
or 8T/dn + BT, where n is the normal to the boundary and B a constant, the
solution may bé expressed as a product of functions of each coordinate sepa-

rately. This allows the boundary conditions to be expressed in terms of a single
variable, and reduces the partial dlffelentlal equat1on to a set of ordinary dif-
ferential equations.

The essential features of the method will now be illustrated by means of a
steady two-dimensional example. Consider the second-order partial differential
cquation

| a2T

a1(¥) 3= a0z T + az(x)T + bl(./) + bz(J) - + bs(y)T = 0. (4-41)

‘A more geuner ahzcd f01 m of this cquatlon Whl(_h mvolves coefficients as functions
of both independent variables is#iot suitable for the separation of variables.

Assume the existence of a product solution -

Ty = X&YW, (4-42)

where X is a function of z alone and Y is a function of y. This assumption be-
comes meaningful when the two functlons X and Y actually satlsfy separate
differential equations.

Introducing Eq. (4-42) into Eq. (4-41) and dividing the result by XY
ylclds

d2X d’y dy 1
[al(’v) 2(7«) SX} X = [bl(y) EiE] + b2(y) i -+ b3(y) Y] 0%
=t )\ (4-43)
"Hence the partial differential equation of Eq. (4—41) is reduced to the followmg
~two ordmary d1fferent1al equations:

dl(iz _d;)i’(- + az(x)—d‘;c— + [aa(zj + MX = 0, ‘

*

4‘ The_method of separation of variables is applicable to steia.dv two-dimen-
_sional problems if and when (i) one of the directions of the problem is expressed
by _a homogeneous differeniial equation subject to homogeneous boundary condi-

_tions (the homogeneous direction), while the other direction is expressed by a homo-
geneous differential equation subject to one homogeneous and one nomhomogeneous
boundary. condition (the monhomoaeneous direction), and (ii) the sion of A% is
chosen such that the boundary-value problem of the homogeneous direction leads lo
a characleristic-value problem. )

"The solutions obtained by the separatlon of variables are in the form of a
sum or integral, depending on whether the homogeneous direction is finite or-
extends to infinity, respectively.




4-7. Nonhomogeneity  fyw AYPM;,“ Conduction Hedd Transfer”

So far, the steady two-dimensional cartesian problems that we have solved by
the method of separation of variables were those involving a-Romogeneous dif-
ferential equation subject to two homogeneous boundary conditions-in the finite
direction, and one homogeneous plus one nonhomogeneous boundary eondition
‘in the remaining (finite or infinite) direction.  Most two-dimensional problems,
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howéver, do nol a prior: satisfy these conditions. In such cases the problem
must be transformed, if possible, to one that does satisfy them. One way of
doing this is to shift the temperature level, a procedure which has been em-
ployed with previous examples in this chapter. If this is impossible, then using
the principle of superposition, we may divide the problem into a number of
simpler problems each satisfying the required homogeneity conditions and all
adding up fo the posed problem.

Nonhomogeneities may result from nonhomogerieous boundaries, and/or non-
homogeneous differential equations. Since nonhomogeneous boundaries are easier,
we shall treat these first. ' )

Example 4-9. We wish to find the steady temperature of the problem given
by Fig. 4-25. : o

The vertical axis is arbitrarily selected as the y—diréction without altering
the generality of the problem. Figure 4-25 may be divided into four problems,
cach one having one nonhomogeneous and three homogeneous boundary con-
ditions. However, the simple transformation § = 7' — Te (or ¢ = T — TY)
readily converts the nonhomogeneous condition h, T, (or T'p) to a homogeneous
condition. Using, for example, § = T — T., we may transform the problem
of IFig. 4-25 to the problem of Fig. 4-26. This problem is expressible 1n terms
of three suitable problems rather than four. Note that the transformation of a

nonhomogeneous boundary condition to a homogeneous boundary condition should
not violate the physics of the boundary condition. In other words, the only homo-
geneous form of +£k(aT/on) = T — To) is £k(3T/0n) = hT, that of T
is 0, and that of &k(8T/dn) = ¢'"1s (3T/dn) = 0.

Hence the problem of Fig. 4-26 can be expressed in terms of the three prob-
lems shown in Fig. 4-27, such that the sum 6, 4 6, -+ 03 satisfies the differen-

tial equation and boundary conditions of Iig. 4-26. The solution of 6;, 62, and




63 may readily be obtalnea I0LOWINg.UI€ proceqaure Ol UN€ PIEVIOUS eXaInpies,
and will not be given here. The axes suitable to each problem are shown in
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Fig. 4-27. The solutions of these problems can be added to each other only when
they are expressed in a common coordinale system. ' "’

The second type of nonhomogeneity, the nonhomogeneous differential equa-
tion, is related to internal energy generation.} The following example demon-
strates the method of solution of these problems.

Example 4-10. Iind the steady temperature of the electric heater of Ex-
ample 2-1, given that the heat transfer coeflicient is large. :
The  formulation of the problem in

terms of Fig. 4-28 1s H
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The solution of the problem is now assumed to be .
0(z,y) = ¥(z,y) + ¢(z) (4-127)
or
0(z, y) = ¥(z,y) + (). (4-128)

The use of either one of these forms is arbitrary in this case.

With the inclusion of the internal energy generation «'’ in the formulation
of the one-dimensional problem, ¢(z) or ¢(y), the differential equation to be
satisfied by the two-dimensional problem, ¥(z, y), can be made homogeneous.

Thus y(z, y) is suitable for separation of variables. However, the completc
formulation of ¢, say ¢(z), and of ¥(z, ¥) requires that the boundary condition:
of these be specified. Here! ¢(x) is assumed to satisfly the one-dimensional forn
of Eq. (4-125). Hence



. dz /// : ' d¢(0) B B )
i S+ =0 FEE =0, ¢() =0 (4-129)

Then, combining Eqgs. (4-124), (4-125), (4-126), (4-127), and (4-129), we find
that ¢(z, y) is satisfied by

| 8% _
Tt E=0 (4-130)
all/(o, y) — 0, l//(L, y) o 0’ (4*—131)
Jx '
WO — 0, v = —6). (4-132)

Thus the solution of the nonseparable problem 8(z, y) is reduced to that of the
separable problem ¢(z, ). The details of this solution are left to the reader.
The result, including ¢(z), ist

Oy) 1[ _(z 2} 5 (—1)" [cosh Ay .
LRk T o 1 7 272 OiL)? \ cosh ol COS An, (1-133)
where N\, L = (2n 4 1)mw/2, n = 0,1, 2,...: Note that the foregoing pro-

cedure, being applicable to cyhndrlcal and snherlcal geometrles and to unsteady
pmblems 18 general.



